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An H.264/AVC encoder [1] saves 25% to 45% and 50% to 70% of
bit rates when compared with MPEG4 and MPEG2, respectively.
New features include 1/4-pixel motion estimation (ME) with mul-
tiple reference frames (MRF) and variable block sizes (VBS),
intra prediction, context-based adaptive variable length coding,
deblocking, rate-distortion optimized mode decision, etc.
Applications range from high definition digital video disc (HD-
DVD) to digital video broadcasting for handheld terminals (DVB-
H).

There are four critical issues to be addressed. First, the encoding
algorithm is extraordinarily complex, making conventional mac-
roblock (MB) pipelining impractical. Second, the integer ME
requires ultra high memory access and computational power.
Third, the fractional ME requires extremely complicated control
and sequential processing for VBS. Fourth, the intra-prediction
involves a great diversity of modes, making resource sharing very
challenging. All these operations require high operating frequen-
cy and memory bandwidth. The reference software, JM7.3,
requires computing power of 3.6 tera-operations/s (TOPS) and
memory access of 5.6 tera-bytes/s (TB/s) on a general-purpose
processor to encode HDTV720p videos (1280×720, 30frames/s) in
real time.

Efficient techniques that enable H.264/AVC baseline profile cod-
ing for HDTV applications are presented in this paper. Figure
7.1.1 shows the detailed chip features. The core size of the chip is
31.72mm2 using 0.18µm CMOS technology. It contains 922.8K
logic gates and 34.72KB SRAMs. Power dissipation is 785mW at
1.8V and 108MHz for HDTV720p videos.

Figure 7.1.2 shows the system architecture. The encoder contains
five engines for integer motion estimation (IME), fractional
motion estimation (FME), intra prediction (IP), entropy coding
(EC), and deblocking (DB). The bandwidth requirements of
HDTV720p videos are 40MB/s and 240MB/s for the system bus
and local bus, respectively. The system is characterized by the
proposed four-stage MB pipelining. Conventional two-stage MB
pipelining, composed of a prediction engine and a block engine
(MC+DCT/Q/IQ/IDCT+VLC), constrains the throughput and uti-
lization for H.264/AVC encoders. The IME has the most severe
computation and memory requirements. FME is 100 times more
complex than that of prior standards due to MRF, VBS, 1/4-pixel
accuracy, and more precise distortion evaluation, and it cannot be
parallelized with IME for the same MB. IP is also very time-con-
suming. Moreover, it is difficult to perform IME, FME, and IP on
the same circuits. Hence, the prediction engine is partitioned into
three stages, and EC/DB is placed at the 4th stage. MB data prop-
agate through IME, FME, IP, and EC/DB stages. Four MBs are
simultaneously processed, and the throughput is thus roughly
doubled. IP must also integrate forward/inverse transform/quan-
tization because reconstructed neighboring pixels are necessary
for generating predictors. Cycles of the four stages are balanced
to achieve high utilization, and local data transfer between stages
is used to reduce bus traffic.

Figure 7.1.3 shows the parallel IME architecture comprising
eight processing element (PE) arrays and sum of absolute differ-

ences (SAD) trees to dramatically reduce memory access, which
is the most critical issue of IME. The full search pattern is adopt-
ed in which each PE array and its corresponding SAD tree com-
pute the SAD of a search point. While prior systolic arrays
require many extra partial SAD registers, the tree structure sup-
ports VBS without any overhead. The reference pixel array acts
as caches between PE arrays and SRAMs to reuse search area
data not only in the horizontal direction for the eight horizontal-
ly consecutive search points but also in the vertical direction for
candidates on adjacent rows. With snake scan of search points,
41×8 SADs (41 blocks of seven sizes per search point × 8 search
points) are continuously generated in each cycle. This parallel
configuration reduces 81% (10.82GB/s) of SRAM access.
Subsequent to the SAD trees are 41 comparator trees. Each com-
parator tree finds the smallest SAD among the eight search
points and updates the best motion vector for one block. In addi-
tion, reuse of overlapped search areas between two horizontally
adjacent MBs is adopted with on-chip padding to save 86%
(0.98GB/s) of local bus bandwidth. Last but not least, pixel trun-
cation, subsampling, and adaptive moving window are applied to
reduce the encoder complexity (from 3.6TOPS to 1.3TOPS for
HDTV720p videos) without noticeable quality loss. Figure 7.1.4
summarizes the bandwidth reduction techniques.

Figure 7.1.5 shows the parallel FME architecture comprising
nine 4×4-block processing units (PUs) per reference frame to
thoroughly parallelize the rate-constrained mode decision with
high utilization, which is the toughest challenge of FME. Sum of
absolute transformed differences (SATD) and all side information
are considered in the matching criterion. Therefore, sequential
processing of different block modes is inevitable. After detailed
analysis, the loops of MRF, 3×3 search points, and two 1-D
Hadamard transforms are unrolled. Each PU contains two paral-
lel 1-D transforms and transpose registers. The parallel 2-D
transform has four times the throughput of the traditional
sequential design but requires a similar gate count. The nine PUs
calculate the SATDs of 3×3 search points in parallel. This config-
uration benefits from extensive sharing of interpolation, and
764K logic gates are saved. For larger blocks, a folding technique
is applied to iteratively utilize the interpolation circuits and PUs.
An efficient schedule is also arranged to reuse interpolated pixels
of previous 4×4-blocks in the vertical direction, and 26% of the
cycles are saved.

A reconfigurable intra predictor generator [2] is designed for
resource sharing of all intra prediction modes, which is the most
important issue of IP. Furthermore, partial distortion elimination
terminates the intra mode decision prematurely when the partial
intra cost is already larger than the minimum inter cost.

Figure 7.1.6 shows that the encoded video quality of this chip is
competitive with that of JM7.3 using full search. With improved
Lagrange multipliers, ours is even better at high bit rates.

Figure 7.1.7 shows the die micrograph of the H.264/AVC encoder.
Parallel and pipeline techniques reduce the frequency and
increase the utilization, while folding and reconfigurable tech-
niques reduce the area. Full search quality is achieved with 1,200
times of speed-up in comparison with JM7.3 on a PC with a
Pentium IV 3GHz CPU.
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Figure 7.1.1: Chip features. Figure 7.1.2: Block diagram of the H.264/AVC encoding system.

Figure 7.1.3: Block diagram of the IME engine.

Figure 7.1.5: Block diagram of the FME engine. Figure 7.1.6: Comparison of coding quality with the reference software JM7.3.

Figure 7.1.4: Bandwidth reduction techniques in the IME engine.
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Figure 7.1.7: Die micrograph of the H.264/AVC encoder.
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